On the Koolen-Park inequality and Terwilliger graphs

نویسنده

  • Alexander L. Gavrilyuk
چکیده

J.H. Koolen and J. Park proved a lower bound for the intersection number c2 of a distance-regular graph Γ. Moreover, they showed that a graph Γ, for which equality is attained in this bound, is a Terwilliger graph. We prove that Γ is the icosahedron, the Doro graph or the Conway–Smith graph if equality is attained and c2 > 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on the Eigenvalues of Distance-Regular Graphs

In 1986, Terwilliger showed that there is a strong relation between the eigenvalues of a distance-regular graph and the eigenvalues of a local graph. In particular, he showed that the eigenvalues of a local graph are bounded in terms of the eigenvalues of a distance-regular graph, and he also showed that if an eigenvalue θ of the distance-regular graph has multiplicity m less than its valency k...

متن کامل

On Subgraphs in Distance-Regular Graphs

Terwilliger [15] has given the diameter bound d < (s 1)(k 1) + 1 for distance-regular graphs with girth 2s and valency k. We show that the only distance-regular graphs with even girth which reach this bound are the hypercubes and the doubled Odd graphs. Also we improve this bound for bipartite distance-regular graphs. Weichsel [17] conjectures that the only distance-regular subgraphs of a hyper...

متن کامل

Distance-regular graphs with complete multipartite μ-graphs and AT4 family

Let be an antipodal distance-regular graph of diameter 4, with eigenvalues θ0 > θ1 > θ2 > θ3 > θ4. Then its Krein parameter q4 11 vanishes precisely when is tight in the sense of Jurišić, Koolen and Terwilliger, and furthermore, precisely when is locally strongly regular with nontrivial eigenvalues p := θ2 and −q := θ3. When this is the case, the intersection parameters of can be parametrized b...

متن کامل

Improving diameter bounds for distance-regular graphs

In this paper we study the sequence (ci)0≤i≤d for a distance-regular graph. In particular we show that if d ≥ 2j and cj = c > 1 then c2j > c holds. Using this we give improvements on diameter bounds by Hiraki and Koolen [5], and Pyber [8], respectively, by applying this inequality.

متن کامل

1-Homogeneous Graphs with Cocktail Party -Graphs

Let be a graph with diameter d ≥ 2. Recall is 1-homogeneous (in the sense of Nomura) whenever for every edge xy of the distance partition {{z ∈ V ( ) | ∂(z, y) = i, ∂(x, z) = j} | 0 ≤ i, j ≤ d} is equitable and its parameters do not depend on the edge xy. Let be 1-homogeneous. Then is distance-regular and also locally strongly regular with parameters (v′, k′, λ′, μ′), where v′ = k, k′ = a1, (v′...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010